
OSCAR: Integrating GAP and Julia

Sebastian Gutsche

University of Siegen

South Bend, July 24, 2018



Outline

1 Introduction to OSCAR

2 GAP-Julia Integration

3 Integration vs. Interfacing

Gutsche OSCAR: Integrating GAP and Julia



Outline

1 Introduction to OSCAR

2 GAP-Julia Integration

3 Integration vs. Interfacing

Gutsche OSCAR: Integrating GAP and Julia



Outline

1 Introduction to OSCAR

2 GAP-Julia Integration

3 Integration vs. Interfacing

Gutsche OSCAR: Integrating GAP and Julia



People

All of this is joint work with

William Hart (TU Kaiserslautern)
Thomas Breuer (RWTH Aachen)
Reimer Behrends (TU Kaiserslautern)
Max Horn (JLU Gießen)
Markus Pfeiffer (University of St Andrews)
...

For a complete list of people involved in the various parts of
OSCAR, see https://oscar.computeralgebra.de/credits.

Gutsche OSCAR: Integrating GAP and Julia

https://oscar.computeralgebra.de/credits


People

All of this is joint work with

William Hart (TU Kaiserslautern)
Thomas Breuer (RWTH Aachen)
Reimer Behrends (TU Kaiserslautern)
Max Horn (JLU Gießen)
Markus Pfeiffer (University of St Andrews)
...

For a complete list of people involved in the various parts of
OSCAR, see https://oscar.computeralgebra.de/credits.

Gutsche OSCAR: Integrating GAP and Julia

https://oscar.computeralgebra.de/credits


Outline

1 Introduction to OSCAR

2 GAP-Julia Integration

3 Integration vs. Interfacing

Gutsche OSCAR: Integrating GAP and Julia



Overview

Examples:

Multigraded equivariant COX rings of
toric varieties over number fields

Graphs of groups in division algebras

Matrix groups over polynomial rings
with coefficients in number fields

Gröbner fans over fields with
discrete valuations

Visionary system surpassing the combined
capabilities of the underlying systems

GAP: computational discrete al-
gebra, group and representa-
tion theory, general purpose high
level interpreted programming
language.

Singular: polynomial computa-
tions, with emphasis on algebraic
geometry, commutative algebra,
and singularity theory.

polymake: convex polytopes,
polyhedral and stacky fans, sim-
plicial complexes and related ob-
jects from combinatorics and ge-
ometry.

ANTIC: number theoretic soft-
ware featuring computations
in and with number fields and
generic finitely presented rings.

Gutsche OSCAR: Integrating GAP and Julia



The vision for OSCAR

Create a new CAS integrating GAP, Singular, polymake, and
ANTIC as tight as possible.

This means
removing the barriers between systems by unifying low-level
data structures;
make all functionality from each system available in every
other system;
make all systems share a common mid-level programming layer.

Gutsche OSCAR: Integrating GAP and Julia



The vision for OSCAR

Create a new CAS integrating GAP, Singular, polymake, and
ANTIC as tight as possible. This means

removing the barriers between systems by unifying low-level
data structures;

make all functionality from each system available in every
other system;
make all systems share a common mid-level programming layer.

Gutsche OSCAR: Integrating GAP and Julia



The vision for OSCAR

Create a new CAS integrating GAP, Singular, polymake, and
ANTIC as tight as possible. This means

removing the barriers between systems by unifying low-level
data structures;
make all functionality from each system available in every
other system;

make all systems share a common mid-level programming layer.

Gutsche OSCAR: Integrating GAP and Julia



The vision for OSCAR

Create a new CAS integrating GAP, Singular, polymake, and
ANTIC as tight as possible. This means

removing the barriers between systems by unifying low-level
data structures;
make all functionality from each system available in every
other system;
make all systems share a common mid-level programming layer.

Gutsche OSCAR: Integrating GAP and Julia



The role of Julia

We use Julia as a powerful mid-level programming layer.

This
includes

bi-directional interfaces from all systems to Julia, so Julia can
be used as a communication layer;
possibility to extend systems with Julia code, making use of
Julia’s powerful JIT-compiler, type system, and extensive
library.

Gutsche OSCAR: Integrating GAP and Julia



The role of Julia

We use Julia as a powerful mid-level programming layer. This
includes

bi-directional interfaces from all systems to Julia, so Julia can
be used as a communication layer;

possibility to extend systems with Julia code, making use of
Julia’s powerful JIT-compiler, type system, and extensive
library.

Gutsche OSCAR: Integrating GAP and Julia



The role of Julia

We use Julia as a powerful mid-level programming layer. This
includes

bi-directional interfaces from all systems to Julia, so Julia can
be used as a communication layer;
possibility to extend systems with Julia code, making use of
Julia’s powerful JIT-compiler,

type system, and extensive
library.

Gutsche OSCAR: Integrating GAP and Julia



The role of Julia

We use Julia as a powerful mid-level programming layer. This
includes

bi-directional interfaces from all systems to Julia, so Julia can
be used as a communication layer;
possibility to extend systems with Julia code, making use of
Julia’s powerful JIT-compiler, type system,

and extensive
library.

Gutsche OSCAR: Integrating GAP and Julia



The role of Julia

We use Julia as a powerful mid-level programming layer. This
includes

bi-directional interfaces from all systems to Julia, so Julia can
be used as a communication layer;
possibility to extend systems with Julia code, making use of
Julia’s powerful JIT-compiler, type system, and extensive
library.

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration

ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia

Singular
All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl

Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl

Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake

Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Current state

Current state of the integration
ANTIC is written in Julia
Singular

All kernel functionality is accessible via Singular.jl
Currently in preparation: A Singular interpreter written in
Julia, using Singular.jl
Ring data structures implemented in Julia can be used as
coefficient rings for polynomials

polymake
Prototype for accessing most polymake functionality from Julia

GAP: Second part of talk

Gutsche OSCAR: Integrating GAP and Julia



Example: Using Singular with Nemo rings

Example for using Nemo number fields as coefficient rings in
Singular

Julia_rings_with_Singular.ipynb

Gutsche OSCAR: Integrating GAP and Julia



Resources

All information about the OSCAR project can be found on

https://oscar.computeralgebra.de

On the page you can find

news,
blog posts,
examples,
and installation instructions.

Gutsche OSCAR: Integrating GAP and Julia

h


Resources

All information about the OSCAR project can be found on

https://oscar.computeralgebra.de

On the page you can find

news,
blog posts,
examples,
and installation instructions.

Gutsche OSCAR: Integrating GAP and Julia

h


Outline

1 Introduction to OSCAR

2 GAP-Julia Integration

3 Integration vs. Interfacing

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide

Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia

Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP

Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia

Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface and GAP.jl

GAP package JuliaInterface and Julia module GAP.jl

GAP Julia

JuliaInterface and GAP.jl provide
Conversion of basic data types (e.g., integers, lists,
permutations) between GAP and Julia
Use of GAP data types in Julia and Julia data types in GAP
Use of Julia functions in GAP and GAP functions in Julia
Possibility to add compiled Julia functions as kernel functions
to GAP

https://github.com/oscar-system

Gutsche OSCAR: Integrating GAP and Julia

https://github.com/oscar-system


JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers

Floats
Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats

Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings

Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings
Booleans

Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Objects

JuliaInterface contains GAP data structures that can hold pointers
to Julia objects:

gap> a := 2;
2

gap> b := ConvertedToJulia( a );
<Julia: 2>

gap> ConvertedFromJulia( b );
2

Possible conversions:

Integers
Floats
Strings
Booleans
Nested lists of the above to Arrays or Tuples

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP( "Base" );

gap> Julia.Base.sqrt( 4 );
<Julia: 2.0>

Julia functions can be used like GAP functions
If necessary and possible, input data is converted to Julia
Calling only possible for convertible types and Julia objects

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP( "Base" );

gap> Julia.Base.sqrt( 4 );
<Julia: 2.0>

Julia functions can be used like GAP functions
If necessary and possible, input data is converted to Julia
Calling only possible for convertible types and Julia objects

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP( "Base" );

gap> Julia.Base.sqrt( 4 );
<Julia: 2.0>

Julia functions can be used like GAP functions
If necessary and possible, input data is converted to Julia
Calling only possible for convertible types and Julia objects

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP( "Base" );

gap> Julia.Base.sqrt( 4 );
<Julia: 2.0>

Julia functions can be used like GAP functions

If necessary and possible, input data is converted to Julia
Calling only possible for convertible types and Julia objects

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP( "Base" );

gap> Julia.Base.sqrt( 4 );
<Julia: 2.0>

Julia functions can be used like GAP functions
If necessary and possible, input data is converted to Julia

Calling only possible for convertible types and Julia objects

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface data structures: Functions

JuliaInterface provides the possibility to call Julia functions by
converting GAP objects:

gap> ImportJuliaModuleIntoGAP( "Base" );

gap> Julia.Base.sqrt( 4 );
<Julia: 2.0>

Julia functions can be used like GAP functions
If necessary and possible, input data is converted to Julia
Calling only possible for convertible types and Julia objects

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions (from orbits.jl):

function orbit( element, generators, action )
work_set = [ element ]
return_set = [ element ]
generator_length = gap_LengthPlist(generators)
while length(work_set) != 0

current_element = pop!(work_set)
for current_generator_number = 1:generator_length

current_generator = gap_ListElement(generators,
current_generator_number)

current_result = gap_CallFunc2Args(action,current_element,
current_generator)

is_in_set = false
for i in return_set

if i == current_result
is_in_set = true
break

end
end
if ! is_in_set

push!( work_set, current_result )
push!( return_set, current_result )

end
end

end
return return_set

end

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions (from orbits.jl):

function orbit( element, generators, action )
work_set = [ element ]
return_set = [ element ]
generator_length = gap_LengthPlist(generators)
while length(work_set) != 0

current_element = pop!(work_set)
for current_generator_number = 1:generator_length

current_generator = gap_ListElement(generators,
current_generator_number)

current_result = gap_CallFunc2Args(action,current_element,
current_generator)

is_in_set = false
for i in return_set

if i == current_result
is_in_set = true
break

end
end
if ! is_in_set

push!( work_set, current_result )
push!( return_set, current_result )

end
end

end
return return_set

end

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



JuliaInterface: Julia functions as kernel modules

Using JuliaInterface, it is possible to write Julia functions and use
them as GAP kernel functions:

gap> JuliaIncludeFile( "orbits.jl" );
gap> JuliaBindCFunction( "orbit", "orbit_jl", 3 );

Compiled Julia functions come close to the performance of kernel
functions:

gap> S := GeneratorsOfGroup( SymmetricGroup( 10000 ) );;

gap> orbit_gap( 1, S, OnPoints );; time;
5769

gap> orbit_jl( 1, S, OnPoints );; time;
84

gap> orbit_c( 1, S, OnPoints );; time;
46

Gutsche OSCAR: Integrating GAP and Julia



GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup( LibGAP.to_gap( 3 ) )
GAP: SymmetricGroup( [ 1 .. 3 ] )

julia> size_gap = GAP.Size( S3 )
GAP: 6

julia> LibGAP.from_gap( size_gap, Int64 )
6

Gutsche OSCAR: Integrating GAP and Julia



GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup( LibGAP.to_gap( 3 ) )
GAP: SymmetricGroup( [ 1 .. 3 ] )

julia> size_gap = GAP.Size( S3 )
GAP: 6

julia> LibGAP.from_gap( size_gap, Int64 )
6

Gutsche OSCAR: Integrating GAP and Julia



GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup( LibGAP.to_gap( 3 ) )
GAP: SymmetricGroup( [ 1 .. 3 ] )

julia> size_gap = GAP.Size( S3 )
GAP: 6

julia> LibGAP.from_gap( size_gap, Int64 )
6

Gutsche OSCAR: Integrating GAP and Julia



GAP.jl: using GAP from Julia

The Julia module GAP.jl provides access to GAP’s data structures
and functions from Julia

julia> S3 = GAP.SymmetricGroup( LibGAP.to_gap( 3 ) )
GAP: SymmetricGroup( [ 1 .. 3 ] )

julia> size_gap = GAP.Size( S3 )
GAP: 6

julia> LibGAP.from_gap( size_gap, Int64 )
6

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup

Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.

Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:

Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C

Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the GAP side

How does GAP benefit from Julia/OSCAR (except mathematical
algorithms)?

Speedup
Now: Find time critical parts of algorithms, rewrite them in C.
Future: Find time critical parts of algorithms, rewrite them in
Julia.

Benefits:
Higher level language, which may be easier to use than C
Extensive functionality available in standard modules

Gutsche OSCAR: Integrating GAP and Julia



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical
algorithms)?

Language features
Flexible type system: Objects can learn about themselves
Built-in traits: Known properties of objects decide which
variant of an algorithm to use
Immediate propagation: Second execution layer is used to
spread properties between objects
Categorical programming language as defined in the CAP
project

Gutsche OSCAR: Integrating GAP and Julia



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical
algorithms)?

Language features

Flexible type system: Objects can learn about themselves
Built-in traits: Known properties of objects decide which
variant of an algorithm to use
Immediate propagation: Second execution layer is used to
spread properties between objects
Categorical programming language as defined in the CAP
project

Gutsche OSCAR: Integrating GAP and Julia



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical
algorithms)?

Language features
Flexible type system: Objects can learn about themselves

Built-in traits: Known properties of objects decide which
variant of an algorithm to use
Immediate propagation: Second execution layer is used to
spread properties between objects
Categorical programming language as defined in the CAP
project

Gutsche OSCAR: Integrating GAP and Julia



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical
algorithms)?

Language features
Flexible type system: Objects can learn about themselves
Built-in traits: Known properties of objects decide which
variant of an algorithm to use

Immediate propagation: Second execution layer is used to
spread properties between objects
Categorical programming language as defined in the CAP
project

Gutsche OSCAR: Integrating GAP and Julia



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical
algorithms)?

Language features
Flexible type system: Objects can learn about themselves
Built-in traits: Known properties of objects decide which
variant of an algorithm to use
Immediate propagation: Second execution layer is used to
spread properties between objects

Categorical programming language as defined in the CAP
project

Gutsche OSCAR: Integrating GAP and Julia



From the OSCAR side

How does OSCAR benefit from GAP (except mathematical
algorithms)?

Language features
Flexible type system: Objects can learn about themselves
Built-in traits: Known properties of objects decide which
variant of an algorithm to use
Immediate propagation: Second execution layer is used to
spread properties between objects
Categorical programming language as defined in the CAP
project

Gutsche OSCAR: Integrating GAP and Julia



Example: Using Singular in GAP via Julia

Example for using Singular in GAP via Julia

Using Singular from GAP.ipynb

Gutsche OSCAR: Integrating GAP and Julia



Outline

1 Introduction to OSCAR

2 GAP-Julia Integration

3 Integration vs. Interfacing

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Problems when interfacing two garbage collected systems

Primitive approach: System A holds a list of objects otherwise only
refered to by System B, and vice versa.

This approach can be implemented using build-in techniques in
GAP and Julia, but
it adds a layer of indirections and causes inefficiencies and
unreachable cycles that involve both GAP and Julia objects
cannot be reclaimed, so it leads to memory leaks.

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Problems when interfacing two garbage collected systems
Primitive approach: System A holds a list of objects otherwise only
refered to by System B, and vice versa.

This approach can be implemented using build-in techniques in
GAP and Julia, but
it adds a layer of indirections and causes inefficiencies and
unreachable cycles that involve both GAP and Julia objects
cannot be reclaimed, so it leads to memory leaks.

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Problems when interfacing two garbage collected systems
Primitive approach: System A holds a list of objects otherwise only
refered to by System B, and vice versa.

This approach can be implemented using build-in techniques in
GAP and Julia, but

it adds a layer of indirections and causes inefficiencies and
unreachable cycles that involve both GAP and Julia objects
cannot be reclaimed, so it leads to memory leaks.

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Problems when interfacing two garbage collected systems
Primitive approach: System A holds a list of objects otherwise only
refered to by System B, and vice versa.

This approach can be implemented using build-in techniques in
GAP and Julia, but
it adds a layer of indirections and causes inefficiencies and

unreachable cycles that involve both GAP and Julia objects
cannot be reclaimed, so it leads to memory leaks.

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Problems when interfacing two garbage collected systems
Primitive approach: System A holds a list of objects otherwise only
refered to by System B, and vice versa.

This approach can be implemented using build-in techniques in
GAP and Julia, but
it adds a layer of indirections and causes inefficiencies and
unreachable cycles that involve both GAP and Julia objects
cannot be reclaimed, so it leads to memory leaks.

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia
Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1
Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP
Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia

Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1
Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP
Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia
Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1
Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP
Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia
Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1

Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP
Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia
Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1
Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP
Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia
Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1
Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP

Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Integration vs. Interfacing

Q: How does OSCAR’s Julia-GAP integration differ from classical
interfacing?

Using the same GC for GAP and Julia
Changes to GAP and Julia to make it possible to use Julia’s
GC simultaneously for GAP and Julia (Behrends/Horn)

Changes to Julia accepted, will be part of 1.1
Changes to GAP accepted, will be part of 4.10 (TBR in
December)

This way, all GAP objects are first-class citizens in Julia, and
Julia objects are first class citizens in GAP
Thus using Julia objects from GAP and GAP objects from Julia
works without any GC overhead (essentially no penalty at all)

Gutsche OSCAR: Integrating GAP and Julia



Acknowledgements

Gutsche OSCAR: Integrating GAP and Julia


	Introduction to OSCAR
	GAP-Julia Integration
	Integration vs. Interfacing

