A constructive model for coherent sheaves over a normal toric variety

Sebastian Gutsche
(j/w Sebastian Posur)

University of Siegen
Paderborn, March 6, 2018

Outline

(1) Computable Categories

Outline

(1) Computable Categories
(2) Model for coherent sheaves over normal toric varieties

Section 1

Computable Categories

Computable categories

Computable categories

A category becomes computable through

Computable categories

A category becomes computable through

- Data structures for objects and morphisms

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

2
1

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

2
1

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

$$
\left.1 \longrightarrow\left(\begin{array}{ll}
1 & 2
\end{array}\right) \text { (} \begin{array}{l}
3 \\
4
\end{array}\right) \longrightarrow 1
$$

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

$$
1 \longrightarrow \begin{aligned}
& \left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \left.2 \longrightarrow \begin{array}{l}
3 \\
4
\end{array}\right)
\end{aligned} 1
$$

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

Computable categories

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

Finitely generated \mathbb{Q}-vector spaces (skeletal)

Categorical operations

Some categorical operations in abelian categories

Categorical operations

Some categorical operations in abelian categories

- Zero morphisms

Categorical operations

Some categorical operations in abelian categories

- Zero morphisms
- Addition and subtraction of morphisms

Categorical operations

Some categorical operations in abelian categories

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums

Categorical operations

Some categorical operations in abelian categories

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and Cokernels of morphisms

Categorical operations

Some categorical operations in abelian categories

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and Cokernels of morphisms

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$.

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$.
$A \xrightarrow{\varphi} B$

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \ldots$
$A \xrightarrow{\varphi} B$

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \ldots$
\ldots one needs an object $\operatorname{ker} \varphi$,
$\operatorname{ker} \varphi$

$$
A \xrightarrow{\varphi} B
$$

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \ldots$
\ldots one needs an object $\operatorname{ker} \varphi$, its embedding $\kappa=$ KernelEmbedding (φ),

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \ldots$
\ldots one needs an object $\operatorname{ker} \varphi$, its embedding $\kappa=$ KernelEmbedding (φ), and for every test morphism τ

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \ldots$
\ldots one needs an object $\operatorname{ker} \varphi$, its embedding $\kappa=$ KernelEmbedding (φ),
and for every test morphism τ a unique morphism $\lambda=\operatorname{KernelLift}(\varphi, \tau)$

Implementation of the kernel

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \ldots$
\ldots one needs an object $\operatorname{ker} \varphi$, its embedding $\kappa=$ KernelEmbedding (φ),
and for every test morphism τ a unique morphism $\lambda=\operatorname{Kernel\operatorname {Lift}}(\varphi, \tau)$, such that

The CAP - project

A

CAP - Categories, Algorithms, Programming

The CAP - project

A

CAP - Categories, Algorithms, Programming
CAP is a framework written in GAP

The CAP - project

A

CAP - Categories, Algorithms, Programming
CAP is a framework written in GAP to implement computable categories and provides

The CAP - project

A P

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,

The CAP - project

A
 P

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,

The CAP - project

A

CAP - Categories, Algorithms, Programming
CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,
- a categorical programming language having categorical operations as syntax elements.

The CAP - project

A

CAP - Categories, Algorithms, Programming
CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,
- a categorical programming language having categorical operations as syntax elements.

Computing the intersection

Let $M_{1} \subseteq N$ and $M_{2} \subseteq N$ subobjects.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$
- $\varphi:=\iota_{1} \circ \pi_{1}-\iota_{2} \circ \pi_{2}$

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$
- $\varphi:=\iota_{1} \circ \pi_{1}-\iota_{2} \circ \pi_{2}$

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$
- $\varphi:=\iota_{1} \circ \pi_{1}-\iota_{2} \circ \pi_{2}$
- $\kappa:=\operatorname{KernelEmbedding}(\varphi)$

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$
- $\varphi:=\iota_{1} \circ \pi_{1}-\iota_{2} \circ \pi_{2}$
- $\kappa:=\operatorname{KernelEmbedding}(\varphi)$

Computing the intersection

Let $M_{1} \hookrightarrow N$ and $M_{2} \hookrightarrow N$ subobjects.
Compute their intersection $\gamma: M_{1} \cap M_{2} \hookrightarrow N$.

- $\pi_{i}:=$ ProjectionInFactorOfDirectSum $\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$
- $\varphi:=\iota_{1} \circ \pi_{1}-\iota_{2} \circ \pi_{2}$
- $\kappa:=$ KernelEmbedding (φ)
- $\gamma:=\iota_{1} \circ \pi_{1} \circ \kappa$

Translation to CAP

$\pi_{i}:=\operatorname{ProjectionInFactorOfDirectSum~}\left(\left(M_{1}, M_{2}\right), i\right), i=1,2$
$\varphi:=\iota_{1} \circ \pi_{1}-\iota_{2} \circ \pi_{2}$
$\kappa:=$ KernelEmbedding (φ)
$\gamma:=\iota_{1} \circ \pi_{1} \circ \kappa$

Translation to CAP

```
\pii}:=\mathrm{ ProjectionInFactorOfDirectSum ((M1, M2),i),i=1,2
    pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
    pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi:= \iota1० 
```

$\kappa:=$ KernelEmbedding (φ)
$\gamma:=\iota_{1} \circ \pi_{1} \circ \kappa$

Translation to CAP

```
\pii}:=\mathrm{ ProjectionInFactorOfDirectSum ((M1, M2),i),i=1,2
    pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
    pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi:= \iota ○ 循 - \iota2 ○ 
    lambda := PostCompose( iota1, pi1 );
    phi := lambda - PostCompose( iota2, pi2 );
\kappa:= KernelEmbedding (\varphi)
```

$\gamma:=\iota_{1} \circ \pi_{1} \circ \kappa$

Translation to CAP

```
\pii}:=\mathrm{ ProjectionInFactorOfDirectSum ((M1, M2),i),i=1,2
    pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
    pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi : = \iota _ { 1 } \circ \pi _ { 1 } - \iota _ { 2 } \circ \pi _ { 2 }
    lambda := PostCompose( iota1, pi1 );
    phi := lambda - PostCompose( iota2, pi2 );
\kappa:= KernelEmbedding (\varphi)
    kappa := KernelEmbedding( phi );
\gamma:= \iota⿴囗 ○ 
```


Translation to CAP

```
\pii}:=\mathrm{ ProjectionInFactorOfDirectSum ((M1, M2),i),i=1,2
    pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
    pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi:= \iota1 ○ }\mp@subsup{\pi}{1}{}-\mp@subsup{\iota}{2}{}\circ\mp@subsup{\pi}{2}{
    lambda := PostCompose( iota1, pi1 );
    phi := lambda - PostCompose( iota2, pi2 );
\kappa:= KernelEmbedding (\varphi)
    kappa := KernelEmbedding( phi );
\gamma:= \iota⿴囗 ○ 
    gamma := PostCompose( lambda, kappa );
```


Translation to CAP

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

lambda := PostCompose(iotal, pi1);
phi := lambda - PostCompose(iota2, pi2);
kappa := KernelEmbedding(phi);
gamma := PostCompose(lambda, kappa);

Translation to CAP

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```


Translation to CAP

Schnitt := function(iota1, iota2)

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```


Translation to CAP

```
Schnitt := function( iota1, iota2 )
M1 := Source( iota1 );
M2 := Source( iota2 );
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```


Translation to CAP

```
Schnitt := function( iota1, iota2 )
    M1 := Source( iota1 );
    M2 := Source( iota2 );
    pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
    pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
    lambda := PostCompose( iota1, pi1 );
    phi := lambda - PostCompose( iota2, pi2 );
    kappa := KernelEmbedding( phi );
    gamma := PostCompose( lambda, kappa );
    return gamma;
end;
```


Translation to CAP

```
Schnitt := function( iota1, iota2 )
    local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;
    M1 := Source( iota1 );
    M2 := Source( iota2 );
    pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
    pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
    lambda := PostCompose( iotal, pi1 );
    phi := lambda - PostCompose( iota2, pi2 );
    kappa := KernelEmbedding( phi );
    gamma := PostCompose( lambda, kappa );
    return gamma;
end;
```


Section 2

Model for coherent sheaves over normal toric varieties

Model for coherent sheaves over normal toric varieties

Coherent sheaves

Model for coherent sheaves over normal toric varieties

Coherent sheaves

Projective space

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$

In the language of category theory:

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$

In the language of category theory:

$$
\mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$

In the language of category theory:

$$
S-\bmod \quad \operatorname{Coh}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$

In the language of category theory:

$$
S-\bmod
$$

$\mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}$,
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading

In the language of category theory:

$$
S-\bmod
$$

$\mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading

In the language of category theory:

$$
S-\bmod \quad \operatorname{Coh}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading

In the language of category theory:

$$
S-\operatorname{grmod}_{\mathbb{Z}} \quad \operatorname{Coh}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading

In the language of category theory:

$$
S-\operatorname{grmod}_{\mathbb{Z}} \quad \operatorname{Coh}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:

$$
S-\operatorname{grmod}_{\mathbb{Z}} \quad \operatorname{Coh}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \quad \operatorname{Coh}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \quad \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \longrightarrow \sim \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Projective space

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Projective space $\mathbb{P}^{n-1}=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / K^{*}\right)-\overline{\{0\}}, K^{*} \cong \operatorname{Hom}\left(\mathbb{Z}, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-\overline{\{0\}}, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a \mathbb{Z}-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that are only supported on $\{0\}$.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that are only supported on Z.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}\left(\mathbb{P}^{n-1}\right)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that are only supported on Z.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{\mathbb{Z}} / S-\operatorname{grmod}_{\mathbb{Z}}^{0} \xrightarrow{\sim} \mathfrak{C o h}(X)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that are only supported on Z.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \longrightarrow \sim \mathfrak{C o h}(X)
$$

Coherent sheaves

Normal toric variety (smooth)

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that are only supported on Z.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \longrightarrow \sim \mathfrak{C o h}(X)
$$

Coherent sheaves

Normal toric variety

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that are only supported on Z.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \xrightarrow{\sim} \mathfrak{C o h}(X)
$$

Coherent sheaves

Normal toric variety

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that sheafify to zero.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \xrightarrow{\sim} \mathfrak{C o h}(X)
$$

Coherent sheaves

Normal toric variety

- Toric variety $X=\left(K^{n} / G^{\prime}\right)-Z, G^{\prime} \cong \operatorname{Hom}\left(G, K^{*}\right)$
- Coherent sheaves correspond to f. g. modules over $S:=K\left[x_{1}, \ldots, x_{n}\right]$ with a G-grading modulo modules that sheafify to zero.

In the language of category theory:
Equivalence of categories

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \longrightarrow \sim \operatorname{Coh}(X)
$$

Computability of $S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0}$?

Serre quotients

Serre quotient

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory.

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The Serre quotient $\mathcal{A} / \mathcal{C}$ is an abelian category with

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The Serre quotient $\mathcal{A} / \mathcal{C}$ is an abelian category with

- $\operatorname{Obj}_{\mathcal{A} / \mathcal{C}}:=\operatorname{Obj}_{\mathcal{A}}$

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The Serre quotient $\mathcal{A} / \mathcal{C}$ is an abelian category with

- $\operatorname{Obj}_{\mathcal{A} / \mathcal{C}}:=\mathrm{Obj}_{\mathcal{A}}$
- $\operatorname{Hom}_{\mathcal{A} / \mathcal{C}}(A, B):=$

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The Serre quotient $\mathcal{A} / \mathcal{C}$ is an abelian category with

- $\operatorname{Obj}_{\mathcal{A} / \mathcal{C}}:=\mathrm{Obj}_{\mathcal{A}}$
- $\operatorname{Hom}_{\mathcal{A} / \mathcal{C}}(A, B):=$

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The Serre quotient $\mathcal{A} / \mathcal{C}$ is an abelian category with

- $\operatorname{Obj}_{\mathcal{A} / \mathcal{C}}:=\mathrm{Obj}_{\mathcal{A}}$
- $\operatorname{Hom}_{\mathcal{A} / \mathcal{C}}(A, B):=$

Serre quotients

Serre quotient

Let \mathcal{A} be an abelian category and \mathcal{C} a thick subcategory. The Serre quotient $\mathcal{A} / \mathcal{C}$ is an abelian category with

- $\operatorname{Obj}_{\mathcal{A} / \mathcal{C}}:=\mathrm{Obj}_{\mathcal{A}}$
- $\operatorname{Hom}_{\mathcal{A} / \mathcal{C}}(A, B):=$

$$
\left.\begin{array}{l}
\operatorname{coker}(\psi) \in \mathcal{C} \\
\varphi(\operatorname{ker}(\psi)) \in \mathcal{C}
\end{array}\right\} / \sim
$$

Model for coherent sheaves over normal toric varieties

Composition in the Serre quotient

Model for coherent sheaves over normal toric varieties

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

FiberProduct: Algorithm for intersection

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition in the Serre quotient

Composition in the Serre quotient $\mathcal{A} / \mathcal{C}$

Composition only by computations in \mathcal{A} !

Model for coherent sheaves over normal toric varieties

Computability of toric coherent sheaves

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)
Is \mathcal{A} computable abelian and \mathcal{C} decidable,

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)
Is \mathcal{A} computable abelian and \mathcal{C} decidable, then $\mathcal{A} / \mathcal{C}$ is computable abelian.

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then $\mathcal{A} / \mathcal{C}$ is computable abelian.

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \cong \mathfrak{C o h}(X) ?
$$

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable, then $\mathcal{A} / \mathcal{C}$ is computable abelian.

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \cong \mathfrak{C o h}(X) ?
$$

Model for coherent sheaves over normal toric varieties

Decidability of S-grmod ${ }_{G}^{0}$

Every toric variety X with Cox ring S has a finite affine cover $\left\{U_{\tau}\right\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in \operatorname{Mon}(S)$.

Model for coherent sheaves over normal toric varieties

Decidability of S-grmod ${ }_{G}^{0}$

Every toric variety X with Cox ring S has a finite affine cover $\left\{U_{\tau}\right\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in \operatorname{Mon}(S)$.

Let $M \in S-\operatorname{grmod}_{G}$.

Model for coherent sheaves over normal toric varieties

Decidability of S-grmod ${ }_{G}^{0}$

Every toric variety X with Cox ring S has a finite affine cover $\left\{U_{\tau}\right\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in \operatorname{Mon}(S)$.

Let $M \in S$-grmod ${ }_{G}$. We have $M \in S$-grmod ${ }_{G}^{0}$ iff

$$
\Gamma\left(\widetilde{M}, U_{\tau}\right)
$$

Model for coherent sheaves over normal toric varieties

Decidability of S-grmod ${ }_{G}^{0}$

Every toric variety X with Cox ring S has a finite affine cover $\left\{U_{\tau}\right\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in \operatorname{Mon}(S)$.

Let $M \in S$-grmod ${ }_{G}$. We have $M \in S$-grmod ${ }_{G}^{0}$ iff

$$
\Gamma\left(\widetilde{M}, U_{\tau}\right)=\left(M_{\tau}\right)_{0}
$$

Decidability of S-grmod ${ }_{G}^{0}$

Every toric variety X with Cox ring S has a finite affine cover $\left\{U_{\tau}\right\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in \operatorname{Mon}(S)$.

Let $M \in S$-grmod ${ }_{G}$. We have $M \in S$-grmod ${ }_{G}^{0}$ iff

$$
\Gamma\left(\widetilde{M}, U_{\tau}\right)=\left(M_{\tau}\right)_{0}=0 \text { for all } U_{\tau} .
$$

Decidability of S-grmod ${ }_{G}^{0}$

Every toric variety X with Cox ring S has a finite affine cover $\left\{U_{\tau}\right\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in \operatorname{Mon}(S)$.

Let $M \in S$-grmod ${ }_{G}$. We have $M \in S$-grmod ${ }_{G}^{0}$ iff

$$
\Gamma\left(\widetilde{M}, U_{\tau}\right)=\left(M_{\tau}\right)_{0}=0 \text { for all } U_{\tau} .
$$

Given a presentation of M, how to compute a presentation of $\left(M_{\tau}\right)_{0}$ for a given τ ?

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0
$$

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$

- Compute inequalities for the cone $\operatorname{Mon}\left(\left(S_{\tau}\right)_{0}\right)$.

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$

- Compute inequalities for the cone $\operatorname{Mon}\left(\left(S_{\tau}\right)_{0}\right)$.
(2) Compute the generators as Hilbert basis of Mon $\left(\left(S_{\tau}\right)_{0}\right)$.

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$
(2) Compute $\left(S_{\tau}\right)_{0}$-generators of $\left(S(\gamma)_{\tau}\right)_{0}, \gamma \in\left\{\alpha_{i}, \beta_{j}\right\}$

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$
(2) Compute $\left(S_{\tau}\right)_{0}$-generators of $\left(S(\gamma)_{\tau}\right)_{0}, \gamma \in\left\{\alpha_{i}, \beta_{j}\right\}$

$$
\operatorname{Mon}\left(\left(S(\gamma)_{\tau}\right)_{0}\right)=\underbrace{P^{\prime}}_{\text {tinio }}+\operatorname{Mon}\left(\left(S_{\tau}\right)_{0}\right)
$$

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$
(2) Compute $\left(S_{\tau}\right)_{0}$-generators of $\left(S(\gamma)_{\tau}\right)_{0}, \gamma \in\left\{\alpha_{i}, \beta_{j}\right\}$

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I} S\left(\alpha_{i}\right) \xrightarrow{\varphi} \prod_{j \in J} S\left(\beta_{j}\right) \longrightarrow M \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$
(2) Compute $\left(S_{\tau}\right)_{0}$-generators of $\left(S(\gamma)_{\tau}\right)_{0}, \gamma \in\left\{\alpha_{i}, \beta_{j}\right\}$
(0) Compute $\left(\varphi_{\tau}\right)_{0}$ using the embedding $P^{\prime} \subseteq \operatorname{Mon}\left(S_{\tau}\right)$ by computing representations for $\varphi_{\tau}\left(p^{\prime}\right)$ for all $p^{\prime} \in P^{\prime}$.

Presentation of $\left(M_{\tau}\right)_{0}$

Strategy for computing a presentation of $\left(M_{\tau}\right)_{0}$ from a free graded presentation of M :

$$
\prod_{i \in I}\left(S\left(\alpha_{i}\right)_{\tau}\right) \xrightarrow{\left(\varphi_{\tau}\right)_{0}} \prod_{j \in J}\left(S\left(\beta_{j}\right)_{\tau}\right)_{0} \longrightarrow\left(M_{\tau}\right)_{0} \longrightarrow 0 .
$$

Algorithm

(1) Compute algebra generators for $\left(S_{\tau}\right)_{0}$
(2) Compute $\left(S_{\tau}\right)_{0}$-generators of $\left(S(\gamma)_{\tau}\right)_{0}, \gamma \in\left\{\alpha_{i}, \beta_{j}\right\}$
(0. Compute $\left(\varphi_{\tau}\right)_{0}$ using the embedding $P^{\prime} \subseteq \operatorname{Mon}\left(S_{\tau}\right)$

Coherent sheaves

So S - $\operatorname{grmod}_{G}^{0}$ is decidable

Coherent sheaves

So S-grmod ${ }_{G}^{0}$ is decidable and therefore

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \cong \mathfrak{C o h}(X)
$$

computable abelian!

Coherent sheaves

$$
\begin{aligned}
& \text { So } S \text {-grmod }{ }_{G}^{0} \text { is decidable and therefore } \\
& S \text {-grmod }{ }_{G} / S \text {-grmod }{ }_{G}^{0} \cong \operatorname{Coh}(X) \\
& \text { computable abelian! }
\end{aligned}
$$

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

Coherent sheaves

So S-grmod ${ }_{G}^{0}$ is decidable and therefore

$$
S-\operatorname{grmod}_{G} / S-\operatorname{grmod}_{G}^{0} \cong \mathfrak{C o h}(X)
$$

computable abelian!

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

- Homology

Coherent sheaves

$$
\begin{gathered}
\text { So } S \text { - } \operatorname{grmod}_{G}^{0} \text { is decidable and therefore } \\
S \text {-grmod }{ }_{G} / S \text {-grmod }{ }_{G}^{0} \cong \operatorname{Coh}(X) \\
\text { computable abelian! }
\end{gathered}
$$

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

- Homology
- Diagram chases

Coherent sheaves

$$
\begin{gathered}
\text { So } S \text { - } \operatorname{grmod}_{G}^{0} \text { is decidable and therefore } \\
S \text {-grmod }{ }_{G} / S \text {-grmod }{ }_{G}^{0} \cong \operatorname{Coh}(X) \\
\text { computable abelian! }
\end{gathered}
$$

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

- Homology
- Diagram chases
- Spectral sequences

Coherent sheaves

$$
\begin{gathered}
\text { So } S \text {-grmod }{ }_{G}^{0} \text { is decidable and therefore } \\
S \text {-grmod }{ }_{G} / S \text {-grmod }{ }_{G}^{0} \cong \operatorname{Coh}(X) \\
\text { computable abelian! }
\end{gathered}
$$

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

- Homology
- Diagram chases
- Spectral sequences
- Purity filtration

Coherent sheaves

$$
\begin{gathered}
\text { So } S \text {-grmod }{ }_{G}^{0} \text { is decidable and therefore } \\
S \text {-grmod }{ }_{G} / S \text {-grmod }{ }_{G}^{0} \cong \operatorname{Coh}(X) \\
\text { computable abelian! }
\end{gathered}
$$

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

- Homology
- Diagram chases
- Spectral sequences
- Purity filtration

Model for coherent sheaves over normal toric varieties

Workshop: CAP Days 2018

Model for coherent sheaves over normal toric varieties

Workshop: CAP Days 2018

August 28-31, 2018 at University of Siegen, featuring

Workshop: CAP Days 2018

August 28-31, 2018 at University of Siegen, featuring

- Talks on ongoing research

Workshop: CAP Days 2018

August 28-31, 2018 at University of Siegen, featuring

- Talks on ongoing research
- Tutorials

Workshop: CAP Days 2018

August 28-31, 2018 at University of Siegen, featuring

- Talks on ongoing research
- Tutorials
- Coding Sprint

Workshop: CAP Days 2018

August 28-31, 2018 at University of Siegen, featuring

- Talks on ongoing research
- Tutorials
- Coding Sprint

More information and registration:
https://homalg-project.github.io/capdays-2018/

