A constructive model for coherent sheaves over a normal toric variety

Sebastian Gutsche (j/w Sebastian Posur)

University of Siegen

Paderborn, March 6, 2018

Gutsche (Siegen)

Constructive toric sheaves

2 Model for coherent sheaves over normal toric varieties

Section 1

Computable Categories

Computable categories

A category becomes computable through

• Data structures for objects and morphisms

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

Finitely generated Q-vector spaces (skeletal)

A category becomes computable through

- Data structures for *objects* and *morphisms*
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

Finitely generated Q-vector spaces (skeletal)

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

Finitely generated Q-vector spaces (skeletal)

1

2

1

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

Finitely generated Q-vector spaces (skeletal)

1

2

A category becomes computable through

- Data structures for *objects* and *morphisms*
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

Finitely generated Q-vector spaces (skeletal)

$$1 \xrightarrow{(1 2)} 2 \xrightarrow{(3 4)} 1$$

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

Finitely generated Q-vector spaces (skeletal)

$$1 \xrightarrow{(1 \ 2)} 2 \xrightarrow{(3 \ 4)} 1$$

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

$$\begin{pmatrix} 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = (11)$$

$$1 \xrightarrow{(1 \ 2)} 2 \xrightarrow{(3 \ 4)} 1$$

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

$$(1 \ 2) \cdot \begin{pmatrix} 3\\4 \end{pmatrix} = (11)$$

$$(1 \ 2) \quad 2 \quad 1$$

$$(1 \ 2) \quad 2 \quad 1$$

$$(1 \ 2) \quad (1 \ 2) \quad (1 \ 2) \quad (1 \ 2)$$

- Data structures for objects and morphisms
- Algorithms to compute the *composition* of morphisms and *identity* morphisms of objects

$$(1 \ 2) \cdot \begin{pmatrix} 3\\4 \end{pmatrix} = (11)$$

$$(1 \ 2) \xrightarrow{2} \xrightarrow{1} \begin{pmatrix} 1\\4 \end{pmatrix} \xrightarrow{$$

Categorical operations

Categorical operations

Some categorical operations in abelian categories

Zero morphisms

- Zero morphisms
- Addition and subtraction of morphisms

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and Cokernels of morphisms

Some categorical operations in abelian categories

- Zero morphisms
- Addition and subtraction of morphisms
- Direct sums
- Kernels and Cokernels of morphisms

• ...

Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$.

Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$.

Implementation of the kernel

Let $\varphi \in Hom(A, B)$. To fully describe the kernel of $\varphi \dots$

Let $\varphi \in Hom(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object ker φ ,

$$A \xrightarrow{\varphi} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object ker φ , its embedding $\kappa = \text{KernelEmbedding}(\varphi)$,

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object ker φ , its embedding $\kappa = \text{KernelEmbedding}(\varphi)$, and for every test morphism τ

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object ker φ , its embedding $\kappa = \text{KernelEmbedding}(\varphi)$, and for every test morphism τ a *unique* morphism $\lambda = \text{KernelLift}(\varphi, \tau)$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object ker φ , its embedding $\kappa = \text{KernelEmbedding}(\varphi)$, and for every test morphism τ a *unique* morphism $\lambda = \text{KernelLift}(\varphi, \tau)$, such that

The CAP - project

CAP - Categories, Algorithms, Programming

Gutsche (Siegen)

The CAP - project

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP

The CAP - project

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

specifications of categorical operations,

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,
- a categorical programming language having categorical operations as syntax elements.

CAP - Categories, Algorithms, Programming

CAP is a framework written in GAP to implement computable categories and provides

- specifications of categorical operations,
- generic algorithms based on basic categorical operations,
- a categorical programming language having categorical operations as syntax elements.

Let $M_1 \subseteq N$ and $M_2 \subseteq N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects.

Computing the intersection

Computing the intersection

Computing the intersection

Computing the intersection

Computing the intersection

Computing the intersection

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

•
$$\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2$$

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

π_i := ProjectionInFactorOfDirectSum ((M₁, M₂), i), i = 1, 2
 φ := ι₁ ο π₁ - ι₂ ο π₂

- $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2
- $\varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2
- $\varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2
- $\varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa :=$ KernelEmbedding (φ)
- $\gamma := \iota_1 \circ \pi_1 \circ \kappa$

 $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

 $\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2$

 $\kappa := \text{KernelEmbedding}(\varphi)$

 $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

pi1 := ProjectionInFactorOfDirectSum([M1, M2], 1); pi2 := ProjectionInFactorOfDirectSum([M1, M2], 2);

 $\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2$

 $\kappa := \text{KernelEmbedding}(\varphi)$

 $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
 \begin{aligned} \varphi &:= \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ \text{lambda} &:= \text{PostCompose( iotal, pil );} \\ \text{phi} &:= \text{lambda} - \text{PostCompose( iota2, pi2 );} \end{aligned}
```

 $\kappa := \text{KernelEmbedding}(\varphi)$

 $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
 \begin{aligned} \varphi &:= \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ \text{lambda} &:= \text{PostCompose( iotal, pil );} \\ \text{phi} &:= \text{lambda} - \text{PostCompose( iota2, pi2 );} \end{aligned}
```

```
\kappa := \text{KernelEmbedding}(\varphi)
```

```
kappa := KernelEmbedding( phi );
```

 $\pi_i :=$ ProjectionInFactorOfDirectSum ((M_1, M_2), i), i = 1, 2

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
 \begin{aligned} \varphi &:= \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ \text{lambda} &:= \text{PostCompose(iotal, pil);} \\ \text{phi} &:= \text{lambda} - \text{PostCompose(iota2, pi2);} \end{aligned}
```

```
\begin{aligned} \kappa &:= \text{KernelEmbedding}(\varphi) \\ \text{kappa} &:= \text{KernelEmbedding(phi);} \\ \gamma &:= \iota_1 \circ \pi_1 \circ \kappa \\ \text{gamma} &:= \text{PostCompose(lambda, kappa);} \end{aligned}
```

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
```

```
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
```

```
kappa := KernelEmbedding( phi );
```

```
gamma := PostCompose( lambda, kappa );
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
Schnitt := function( iotal, iota2 )
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
Schnitt := function( iota1, iota2 )
```

```
M1 := Source( iotal );
M2 := Source( iota2 );
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iota1, pi1 );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
Schnitt := function( iota1, iota2 )
```

```
M1 := Source( iotal );
M2 := Source( iota2 );
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
return gamma;
```

```
end;
```

```
Schnitt := function( iotal, iota2 )
  local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;
 M1 := Source( iotal );
 M2 := Source( iota2 );
 pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end;
```

Section 2

Model for coherent sheaves over normal toric varieties

Model for coherent sheaves over normal toric varieties

Coherent sheaves

Projective space

Projective space

• Projective space $\mathbb{P}^{n-1} = (K^n/K^*) - \overline{\{0\}},$

Projective space

• Projective space $\mathbb{P}^{n-1} = (K^n/K^*) - \overline{\{0\}},$

Projective space

- Projective space $\mathbb{P}^{n-1} = (\mathbf{K}^n / \mathbf{K}^*) \overline{\{\mathbf{0}\}},$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n]

Projective space

• Projective space $\mathbb{P}^{n-1} = (\mathbf{K}^n/\mathbf{K}^*) - \overline{\{\mathbf{0}\}},$

Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n]

In the language of category theory:
Projective space

• Projective space $\mathbb{P}^{n-1} = (\mathbf{K}^n/\mathbf{K}^*) - \overline{\{\mathbf{0}\}},$

Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n]

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (\mathbf{K}^n/\mathbf{K}^*) \overline{\{\mathbf{0}\}},$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n]

In the language of category theory:

S-mod

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}
ight)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n / K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n]

In the language of category theory:

S-mod

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}
ight)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n / K^*) \overline{\{0\}},$
- Coherent sheaves correspond to f. g. modules over S := K [x₁,..., x_n] with a ℤ-grading

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over S := K [x₁,..., x_n] with a ℤ-grading

In the language of category theory:

 $\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over S := K [x₁,..., x_n] with a ℤ-grading

$$S$$
-grmod _{\mathbb{Z}}

 $\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over S := K [x₁,..., x_n] with a ℤ-grading

$$S$$
-grmod _{\mathbb{Z}}

$$\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \text{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-gr $od_{\mathbb{Z}}$

 $\mathfrak{Coh}\left(\mathbb{P}^{n-1}\right)$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \text{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Projective space

• Projective space
$$\mathbb{P}^{n-1} = (K^n/K^*) - \overline{\{0\}}, K^* \cong \text{Hom}(\mathbb{Z}, K^*)$$

Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$\operatorname{S-\operatorname{grmod}}_{\mathbb{Z}}/\operatorname{S-\operatorname{grmod}}_{\mathbb{Z}}^{0}$$
 $\operatorname{\mathfrak{Coh}}\left(\mathbb{P}^{n-1}\right)$

Projective space

• Projective space
$$\mathbb{P}^{n-1} = (K^n/K^*) - \overline{\{0\}}, K^* \cong \text{Hom}(\mathbb{Z}, K^*)$$

Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} \longrightarrow $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Projective space

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \text{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Projective space $\mathbb{P}^{n-1} = (K^n/K^*) \overline{\{0\}}, K^* \cong \text{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Toric variety $X = (K^n/K^*) \overline{\{0\}}, K^* \cong \operatorname{Hom}(\mathbb{Z}, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') \overline{\{0\}}, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,...,x_n] with a ℤ-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a G-grading modulo modules that are only supported on {0}.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a G-grading modulo modules that are only supported on Z.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod _{\mathbb{Z}} $\xrightarrow{\sim}$ $\mathfrak{Coh}(\mathbb{P}^{n-1})$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a G-grading modulo modules that are only supported on Z.

$$S$$
-grmod _{\mathbb{Z}} / S -grmod⁰ _{\mathbb{Z}} \longrightarrow $\mathfrak{Coh}(X)$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a G-grading modulo modules that are only supported on Z.

$$S$$
-grmod_G/ S -grmod_G⁰ \longrightarrow $\mathfrak{Coh}(X)$

Normal toric variety (smooth)

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a G-grading modulo modules that are only supported on Z.

$$S$$
-grmod_G/ S -grmod_G⁰ \longrightarrow $\mathfrak{Coh}(X)$

Normal toric variety

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a *G*-grading modulo modules that are only supported on *Z*.

$$S$$
-grmod_G/S-grmod_G⁰ \longrightarrow $\mathfrak{Coh}(X)$

Normal toric variety

- Toric variety $X = (K^n/G') Z, G' \cong \text{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a G-grading modulo modules that sheafify to zero.

$$S$$
-grmod_G/S-grmod_G⁰ \longrightarrow $\mathfrak{Coh}(X)$

Normal toric variety

- Toric variety $X = (K^n/G') Z, G' \cong \operatorname{Hom}(G, K^*)$
- Coherent sheaves correspond to f. g. modules over
 S := K [x₁,..., x_n] with a *G*-grading modulo modules that sheafify to zero.

In the language of category theory: Equivalence of categories

$$S$$
-grmod_G/S-grmod_G⁰ \longrightarrow $\mathfrak{Coh}(X)$

Computability of S-grmod_{*G*}/S-grmod⁰_{*G*}?

Serre quotient

Serre quotient

Let ${\mathcal A}$ be an abelian category and ${\mathcal C}$ a thick subcategory.

Serre quotient

Let A be an abelian category and C a thick subcategory. The **Serre quotient** A/C is an abelian category with

Serre quotient

Let A be an abelian category and C a thick subcategory. The **Serre** quotient A/C is an abelian category with

•
$$Obj_{\mathcal{A}/\mathcal{C}} := Obj_{\mathcal{A}}$$

Serre quotient

Let A be an abelian category and C a thick subcategory. The **Serre** quotient A/C is an abelian category with

•
$$\operatorname{Obj}_{\mathcal{A}/\mathcal{C}} := \operatorname{Obj}_{\mathcal{A}}$$

Serre quotient

Let A be an abelian category and C a thick subcategory. The **Serre** quotient A/C is an abelian category with

•
$$\operatorname{Obj}_{\mathcal{A}/\mathcal{C}} := \operatorname{Obj}_{\mathcal{A}}$$

Serre quotient

Let A be an abelian category and C a thick subcategory. The **Serre** quotient A/C is an abelian category with

•
$$\operatorname{Obj}_{\mathcal{A}/\mathcal{C}} := \operatorname{Obj}_{\mathcal{A}}$$

Serre quotient

Let A be an abelian category and C a thick subcategory. The **Serre** quotient A/C is an abelian category with

•
$$\operatorname{Obj}_{\mathcal{A}/\mathcal{C}} := \operatorname{Obj}_{\mathcal{A}}$$

Model for coherent sheaves over normal toric varieties

Composition in the Serre quotient

Model for coherent sheaves over normal toric varieties

Composition in the Serre quotient

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

FiberProduct: Algorithm for intersection

Gutsche (Siegen)

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition in the Serre quotient \mathcal{A}/\mathcal{C}

Composition only by computations in \mathcal{A} !

Computability of toric coherent sheaves

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)

Is \mathcal{A} computable abelian and \mathcal{C} decidable,

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)

Is $\mathcal A$ computable abelian and $\mathcal C$ decidable, then $\mathcal A/\mathcal C$ is computable abelian.

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)

Is $\mathcal A$ computable abelian and $\mathcal C$ decidable, then $\mathcal A/\mathcal C$ is computable abelian.

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$?

Computability of toric coherent sheaves

Theorem (Barakat, Lange-Hegermann)

Is $\mathcal A$ computable abelian and $\mathcal C$ decidable, then $\mathcal A/\mathcal C$ is computable abelian.

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$?

Every toric variety X with Cox ring S has a finite affine cover $\{U_{\tau}\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in Mon(S)$.

Every toric variety X with Cox ring S has a finite affine cover $\{U_{\tau}\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in Mon(S)$.

Let $M \in S$ -grmod_G.

Every toric variety X with Cox ring S has a finite affine cover $\{U_{\tau}\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in Mon(S)$.

Let $M \in S\operatorname{-grmod}_G$. We have $M \in S\operatorname{-grmod}_G^0$ iff $\Gamma\left(\widetilde{M}, U_{ au}
ight)$

Every toric variety X with Cox ring S has a finite affine cover $\{U_{\tau}\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in Mon(S)$.

Let $M \in S$ -grmod_{*G*}. We have $M \in S$ -grmod⁰_{*G*} iff

$$\Gamma\left(\widetilde{M},U_{\tau}\right) = (M_{\tau})_{0}$$

Every toric variety X with Cox ring S has a finite affine cover $\{U_{\tau}\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in Mon(S)$.

Let $M \in S$ -grmod_G. We have $M \in S$ -grmod_G⁰ iff $\Gamma\left(\widetilde{M}, U_{\tau}\right) = (M_{\tau})_0 = 0$ for all U_{τ} .

Every toric variety X with Cox ring S has a finite affine cover $\{U_{\tau}\}$, defined by the orbits of the torus acting on X, and naturally indexed by monomials $\tau \in Mon(S)$.

Let $M \in S$ -grmod_{*G*}. We have $M \in S$ -grmod⁰_{*G*} iff

$$\Gamma\left(\widetilde{M},U_{\tau}
ight)=\left(M_{ au}
ight)_{0}=0 ext{ for all } U_{ au}.$$

Given a presentation of *M*, how to compute a presentation of $(M_{\tau})_0$ for a given τ ?

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \stackrel{\varphi}{\longrightarrow} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \stackrel{\varphi}{\longrightarrow} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

Algorithm

• Compute algebra generators for $(S_{\tau})_0$

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

- Compute algebra generators for $(S_{\tau})_0$
 - Compute inequalities for the cone Mon $((S_{\tau})_0)$.

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

- Compute algebra generators for $(S_{\tau})_0$
 - Compute inequalities for the cone Mon $((S_{\tau})_0)$.
 - **2** Compute the generators as HILBERT basis of Mon $((S_{\tau})_0)$.

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \stackrel{\varphi}{\longrightarrow} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

Algorithm

• Compute algebra generators for $(S_{\tau})_0$

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

- Compute algebra generators for $(S_{\tau})_0$
- **2** Compute $(S_{\tau})_0$ -generators of $(S(\gamma)_{\tau})_0$, $\gamma \in \{\alpha_i, \beta_j\}$

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

Algorithm

 Compute algebra generators for (S_τ)₀
 Compute (S_τ)₀-generators of (S(γ)_τ)₀, γ ∈ {α_i, β_j} Mon ((S(γ)_τ)₀) = P' + Mon ((S_τ)₀)

finite

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

- Compute algebra generators for $(S_{\tau})_0$
- **2** Compute $(S_{\tau})_0$ -generators of $(S(\gamma)_{\tau})_0$, $\gamma \in \{\alpha_i, \beta_j\}$

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \mathcal{S}(\alpha_i) \xrightarrow{\varphi} \prod_{j\in J} \mathcal{S}(\beta_j) \longrightarrow M \longrightarrow 0.$$

- Compute algebra generators for $(S_{\tau})_0$
- 2 Compute $(S_{\tau})_0$ -generators of $(S(\gamma)_{\tau})_0, \ \gamma \in \{\alpha_i, \ \beta_j\}$
- Sompute $(\varphi_{\tau})_0$ using the embedding $P' \subseteq Mon(S_{\tau})$ by computing representations for $\varphi_{\tau}(p')$ for all $p' \in P'$.

Strategy for computing a presentation of $(M_{\tau})_0$ from a free graded presentation of *M*:

$$\prod_{i\in I} \left(\mathcal{S}(\alpha_i)_{\tau} \right) \xrightarrow{(\varphi_{\tau})_0} \prod_{j\in J} \left(\mathcal{S}\left(\beta_j\right)_{\tau} \right)_0 \longrightarrow \left(M_{\tau} \right)_0 \longrightarrow 0.$$

- Compute algebra generators for $(S_{\tau})_0$
- 2 Compute $(S_{\tau})_0$ -generators of $(S(\gamma)_{\tau})_0$, $\gamma \in \{\alpha_i, \beta_j\}$
- **③** Compute $(\varphi_{\tau})_0$ using the embedding $P' \subseteq Mon(S_{\tau})$

So S-grmod⁰_G is decidable

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

Homology

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

- Homology
- Diagram chases

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

- Homology
- Diagram chases
- Spectral sequences

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

- Homology
- Diagram chases
- Spectral sequences
- Purity filtration

So S-grmod⁰_G is decidable and therefore

$$S$$
-grmod_G/ S -grmod_G⁰ \cong $\mathfrak{Coh}(X)$

computable abelian!

We can apply algorithms for abelian categories to coherent sheaves over normal toric varieties:

- Homology
- Diagram chases
- Spectral sequences
- Purity filtration

•

Workshop: CAP Days 2018

Workshop: CAP Days 2018

August 28 - 31, 2018 at University of Siegen, featuring

Workshop: CAP Days 2018

August 28 - 31, 2018 at University of Siegen, featuring

Talks on ongoing research

Workshop: CAP Days 2018

August 28 - 31, 2018 at University of Siegen, featuring

- Talks on ongoing research
- Tutorials

Workshop: CAP Days 2018

August 28 - 31, 2018 at University of Siegen, featuring

- Talks on ongoing research
- Tutorials
- Coding Sprint

Workshop: CAP Days 2018

August 28 - 31, 2018 at University of Siegen, featuring

- Talks on ongoing research
- Tutorials
- Coding Sprint

More information and registration:

https://homalg-project.github.io/capdays-2018/