

Fachbereich Mathematik Wintersemester 2010/11 Mohamed Barakat Simon Hampe

Cryptography Homework assignment 12

Due date: Wednesday 02/02 at 13:45

- **Exercise 1.** (1) Determine (as subsets) all lines in $\mathbb{P}^2(\mathbb{F}_2)$. Sketch all lines in a graph with vertices being the points of $\mathbb{P}^2(\mathbb{F}_2)$: If two vertices are connected by an edge then the corresponding points lie on a line.
 - (2) Derive a formula for the number of points in $\mathbb{P}^2(\mathbb{F}_q)$.
 - (3) Derive a formula for the number of lines in $\mathbb{P}^2(\mathbb{F}_q)$.
 - (4) Explain the relation between the two numbers.

Exercise 2. Let E be a WEIERSTRASS equation of the form $y^2 = f(x)$ over a field K with $f(x) = x^3 + a_2x^2 + a_4x + a_6$. A point $(x_0, y_0) \in E(K)$ is called **singular** if $\frac{\partial F}{\partial y}(x_0, y_0) = \frac{\partial F}{\partial x}(x_0, y_0) = 0$, where $F = y^2 - f(x)$.

- (1) Show in the case char $K \neq 2$:
 - (a) Prove: E is singular \iff disc f=0. The discriminant of a degree n polynomial $f \in K[x]$ is defined as disc $f := \prod_{i \neq j} (\alpha_i - \alpha_j)$, where $\alpha_1, \ldots, \alpha_n$ are the roots of f in the splitting field. In particular, disc f=0 iff f has a multiple root (in the splitting field).
 - (b) E has at most one singular point.
- (2) Let $K = \mathbb{F}_{2^n}$ for $n \in \mathbb{N}$:
 - (a) Each element of K is a square.
 - (b) E is singular.

Exercise 3. Let $K = \mathbb{F}_{2^n}$ for $n \in \mathbb{N}$:

(1) Let $E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ be a WEIERSTRASS equation over K. A linear transformation in the variables x, y is the substitution

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto A \cdot \left(\begin{array}{c} x \\ y \end{array}\right) + b$$

with $A \in GL_2(K)$ and $b \in K^2$. Show

- (a) If $a_1 \neq 0$ then E can be changed by a linear transformation to $a_4 = 0$ without altering a_1 and a_3 .
- (b) If $a_1 = 0, a_3 \neq 0$ then E can be changed by a linear transformation to $a_2 = 0$ without altering a_1 and a_3 .
- (2) Describe a simple condition for the non-smoothness of E in the cases
 - (a) $a_1 \neq 0$, $a_3 = 0$.
 - (b) $a_1 = 0, a_3 \neq 0.$

Hint: Assume the simple form of E achieved in (1).

(3) Classify all elliptic curves over \mathbb{F}_2 satisfying the simple form achieved in (1).